*Upadate: I’ve implemented a Maxima matrix-vector equation solver with simpler Maxima-specific algorithm in a later post. That method is based on the built-in function linsolve(). In that post I show an example that breaks linsolve() but that is handled correctly by the backsolve() method.
Is there really not a solver in Maxima that takes matrix A and vector b and returns the solution of ? Of course we could do invert(A).b, but that ignores consistent systems where
isn’t invertible…or even isn’t square.
Here’s a little function matsolve(A,b) that solves for general
using the built-in Gaussian Elimination routine echelon(), with the addition of a homemade backsolve() function. The function in turn relies on a little pivot column detector pivot() and my matrix dimension utility matsize(). This should include the possibilities of non-square
, non-invertible
, and treats the case of non-unique solutions in a more or less systematic way.

matsolve(A,b):=block(
[AugU],
AugU:echelon(addcol(A,b)),
backsolve(AugU)
);
backsolve(augU):=block(
[i,j,m,n,b,x,klist,k,np,nosoln:false],
[m,n]:matsize(augU),
b:col(augU,n),
klist:makelist(concat('%k,i),i,1,n-1),
k:0,
x:transpose(matrix(klist)),
for i:m thru 1 step -1 do (
np:pivot(row(augU,i)),
if is(equal(np,n)) then
(nosoln:true,return())
else if not(is(equal(np,0))) then
(x[np]:b[i],
for j:np+1 thru n-1 do
x[np]:x[np]-augU[i,j]*x[j])
),
if nosoln then
return([])
else
return(expand(x))
)$
matsize(A):=[length(A),length(transpose(A))]$
pivot(rr):=block([i,rlen],
p:0,
rlen:length(transpose(rr)),
for i:1 thru rlen do(
if is(equal(part(rr,1,i),1)) then (p:i,return())),
return(p)
)$