Roots, Multiplicities, and to_poly_solve

A few days ago I posted some code to factor and perform partial fraction decomposition using all available complex roots.  The approach is to find roots a — taking note of the multiplicity m of each —  and then construct factors of the form (z-a)^m.

As I’ve noted before, the built-in command solve can fail to find solutions.  The more robust Maxima solver is to_poly_solve.    That said, after a call to to_poly_solve, I don’t know how to get my hands on the multiplicities.  So, I’ve written a little utility to compute and return a list of multiplicities for the roots returned by to_poly_solve.  Here’s an example, followed by the code.  Notice that because to_poly_solve returns solutions using the %union construction, extracting the jth root requires something like root:rhs(part(s,j,1))

tpsmult1

/* tpsmult1 assumes results of to_poly_solve applied to _f, 
 are passed in the argument s */
tpsmult1(_f,_z,s):=block(
[d,root,nroots,mult,m1],
nroots:length(s),
mult:[],
for j:1 thru nroots do (
root:rhs(part(s,j,1)),
m1:rootmult(_f,_z,root),
mult: endcons(m1,mult)
),
mult
);

/* find the multiplicity of a root _a for the polynomial _f */
rootmult(_f,_z,_a):=block(
[d,val,m,mm],
m:1,
d:divide(_f,(_z-_a)),
val:subst(_z=_a,part(d,1)),
if (val=0) then (
 mm:rootmult(part(d,1),_z,_a),
 m:m+mm
 ),
m
);
Advertisement

Partial Fraction Decomposition Using Complex Factors

A few days ago I wrote about my solution for factoring a polynomial into factors corresponding to complex roots,  factorC.

One of the uses for that utility is to perform a partial fractions decomposition of rational functions.  Here’s a complex partial fraction function that uses factorC and the built-in Maxima function partfrac.

partfracC

partfracC(_f,_z):=block(
[d,fd],
d:denom(_f),
fd:factorC(d,_z),
partfrac(1/fd,_z)
);