## Complex Factors of Real and Complex Polynomials – part 2

Last week I posted a Maxima utility to factor polynomials using complex roots.  The idea was to use the built-in solver solve to find each root $a$ with multiplicity $m$, and then construct a factor of the form $(z-a)^m$.  Typically, solve can fail to identify some roots that are returned by the more robust to_poly_solve.  My problem at that time was that I didn’t know how to access the multiplicities for the roots returned by to_poly_solve.

I’ve written a utility to determine multiplicities for the roots returned by to_poly_solve. With that, here’s an updated version of factorC that takes advantage of the more robust solver.

```/* factor a polynomial using all its complex roots */
factorC(_f,_z):=block(
[s,n,m,fp,j],
fp:1,
ss:to_poly_solve(_f,_z),
s:create_list(args(ss)[k][1],k,1,length(ss)),
m:tpsmult1(_f,_z,ss),
/*These lines were needed before I figured out how
how to handle multiplicities with to_poly_solve
s:solve(_f,_z),
m:multiplicities,*/
n:length(s),
for j:1 thru n do
if lhs(s[j])#0
then fp:fp*(_z-(rhs(s[j])))^m[j],
fp:fp*divide(_f,fp)[1],
fp
);```

## Partial Fraction Decomposition Using Complex Factors

A few days ago I wrote about my solution for factoring a polynomial into factors corresponding to complex roots,  factorC.

One of the uses for that utility is to perform a partial fractions decomposition of rational functions.  Here’s a complex partial fraction function that uses factorC and the built-in Maxima function partfrac.

```partfracC(_f,_z):=block(
[d,fd],
d:denom(_f),
fd:factorC(d,_z),
partfrac(1/fd,_z)
);```

## Complex Factors of Real and Complex Polynomials

I’m getting ready for my fall Complex Variables class.  I noticed that the built-in Maxima function residue doesn’t reliably do the right thing.  My goal is to make some improvements to  Maxima residue calculations in Maxima over the course of the next month.

As I started to look at some test cases, I realized I didn’t know how to factor a polynomial into complex factors.  In the simplest case:

but I wanted to see

Maybe someone will find this and let me know that there’s a simple way to make that happen using existing Maxima commands.  Until then, I’ve written a little utility  to identify the roots (both real and complex) of a polynomial and return a factorization.  Here’s an example, and the code.  Notice that it only works as well as the root finder solve.  I tried to upgrade to the more robust to_poly_solve,  but I don’t yet know how to handle multiplicities in that case.

```factorC(_f,_z):=block(
[s,n,m,fp,j],
fp:1,
/* This commented code was meant to use the
more robust solver to_poly_solve, but
I couldn't understand how to handle multiplicities
ss:args(to_poly_solve(_f,_z)),
s:create_list(ss[k][1],k,1,length(ss)),*/
s:solve(_f,_z),
m:multiplicities,
n:length(s),
for j:1 thru n do
if lhs(s[j])#0
then fp:fp*(_z-(rhs(s[j])))^m[j],
fp:fp*divide(_f,fp)[1],
fp
);```